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A data matching algorithm and its applications in seismic

data analysis

Sarah Yvonne Greer, B.S.

The University of Texas at Austin, 2018

Supervisor: Dr. Sergey Fomel

Data matching applications appear in many computational geophysics prob-

lems. In this thesis, I introduce a new efficient algorithm to aid in data matching

that balances local frequency content between seismic data sets. Then, I provide a

few examples where applying this algorithm to seismic data helps improve results.

These applications include multi-component image registration, matching and merg-

ing high-resolution and legacy seismic images, and improving migration resolution by

approximating the least-squares Hessian. The applications are illustrated by several

2D and 3D, real and synthetic data sets.

vi



Table of Contents

Acknowledgments iv

Abstract vi

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

Chapter 2. Background 4

Chapter 3. Balancing local frequency content in seismic data using
non-stationary smoothing 13

Chapter 4. Matching and merging high-resolution and legacy seismic
images 33

Chapter 5. Improving migration resolution by approximating the least-
squares Hessian using non-stationary amplitude and fre-
quency matching 50

Chapter 6. Conclusions 65

Appendix 68

Bibliography 74

Vita 80

vii



List of Tables

2.1 Mathematical representation of the three data matching operators. . 10

1 List of figures in this thesis and the locations of scripts and programs
to generate them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



List of Figures

2.1 A seismic image (a) and its local frequency content (b). Because its
local frequency varies both spatially and temporally, we can say its
frequency content is smoothly non-stationary. . . . . . . . . . . . . . 5

2.2 (a) Two traces that need to be matched—we will match the red trace
to the black trace. (b) Red trace after filtering. (c) Red trace from
(b) after scaling. (d) The final result: red trace from (c) after shifting,
which now better matches with the black trace. The amount and order
in which these operations is applied affects the final result (Figure 2.3). 7

2.3 (a) A lower-resolution seismic trace (black) and a higher-resolution
seismic trace (red) acquired over the same area. (b) Data matching
operations are noncommutative—the order in which they are applied
matters. When matching the red trace to the black trace, the green
trace had first smoothing, then amplitude balancing, and finally shift-
ing; the yellow trace had first amplitude balancing, then smoothing,
and finally shifting. The operation order matters and affects the final
result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 The initial legacy (a) and high-resolution (b) images. . . . . . . . . . 16

3.2 Spectra for the entire image display of the legacy (red) and high-
resolution (blue) images before (a) and after (b) spectral balancing
using the theoretical method. . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Calculated spatially and temporally variable smoothing radius. This
represents the number of seconds in the temporal direction that the
high-resolution image gets averaged over in a triangle weight to balance
local frequency content with the legacy image at each sample. . . . . 19

3.4 Difference in local frequencies between the legacy and high-resolution
images before (a) and after (b) balancing their frequency content by
non-stationary smoothing. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Initial legacy (a) and high-resolution (b) images. These images show
the same subsurface geology, but look remarkably different as the
high-resolution image has distinctly higher frequency content than the
legacy image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 The smoothing radius, which is a function of time and space, this
method produces after 5 iterations. This represents the number of
samples in time that the high-resolution image needs to be smoothed
over in a triangle weight to balance local frequency content with the
legacy image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



3.7 Spectral content of the legacy (red) and high-resolution (blue) images
before (a) and after (b) spectral balancing using the theoretical method. 25

3.8 Difference in local frequencies (residual) between the legacy and high-
resolution images before (a) and after (b) the 5th iteration of frequency
balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9 Initial PP (a) and SS (b) images. . . . . . . . . . . . . . . . . . . . . 28

3.10 Interleaved PP and warped SS traces before (a) and after (b) frequency
balancing and residual registration. After registration, the signal con-
tent between the two initial images is more aligned; for example, the
reflections around 0.3 and 0.6 s. This indicates a successful registration. 30

3.11 Convergence of the algorithm from Equation (3.8) for (a) different ini-
tial guesses, and (b) different choices of c, the step length, using the
theoretical radius as the initial guess. . . . . . . . . . . . . . . . . . . 31

4.1 The initial legacy (a) and high-resolution (b) images. The merged im-
age (c) is the final product of the proposed workflow: the combination
of both the legacy and high-resolution images. . . . . . . . . . . . . . 36

4.2 Difference between the legacy and smoothed high-resolution images
before (a) and after (b) aligning the data sets. Before accounting for
time shifts, much of the signal content did not align in time, so coherent
reflections were subtracted out. After accounting for time shifts, the
reflections are more aligned, so much of the subtracted information is
noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 The weights for the high-resolution (a) and legacy (b) images for the
least-squares merge. The high-resolution weight is strongly weighted in
the shallow part and blends to favor the legacy image with depth. The
legacy weight is selected to boost the legacy image’s relative amplitudes
to match that of the high-resolution image. . . . . . . . . . . . . . . . 42

4.4 The spectra of the entire image display of the legacy (red dashed),
high-resolution (blue dotted), and merged (magenta solid) images for
the first data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 The first 600 ms of data from a sample line from the legacy, high-
resolution, and merged image (a). The same images with depth for
the legacy, high-resolution, and merged images (b). The merged image
resembles the high-resolution image in the shallow parts and incorpo-
rates the more coherent lower frequency information from the legacy
image with depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 The spectral content of the entire image display of the legacy (red
dashed), high-resolution (blue dotted), and resultant merged (magenta
solid) images for the second data set. . . . . . . . . . . . . . . . . . . 46

4.7 The legacy (a), high-resolution (b), and resultant merged (c) images
of the second data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



5.1 The Sigsbee model reflectivity (a), and migration velocity model (b). 54

5.2 The first migrated image, m0 (a), and the second migrated image, m1

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 The forward amplitude balancing weight, A (a) and the smoothing
radius (b), which represents the number of samples in both dimensions
that m0 must be smoothed over in a triangle weight to balance the local
frequency content with m1. This represents the forward smoothing
operation, S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Transfer functions for a stationary forward triangle smoothing operator
(blue) and its inverse (red). . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 The corrected migrated image, found by applying equation (5.10) to m0. 61

5.6 The first migrated image (a), the corrected migrated image (b), and
the Sigsbee model reflectivity (c). . . . . . . . . . . . . . . . . . . . . 63

xi



Chapter 1

Introduction

Data matching is a conceptually simple problem that appears in many com-

putational geophysics applications. Essentially, given two data sets, data matching

can be thought of as finding the transformation from one data set to the other. This

is useful in applications such as multi-component seismic image registration, where

two separate seismic images, one P-wave image and one S- wave image, are acquired

over the same area. These must be matched properly, as the two images are not

temporally aligned and have different frequency and amplitude content, in order for

them to be directly compared and interpreted.

Many other geophysics applications can be addressed from a data matching

standpoint and fall under several main categories. One category is matching data of

different physics, such as tying synthetic seismograms from well log data to surface

seismic data (Herrera et al., 2014; Bader et al., 2018) and multicomponent seismic

image registration (Fomel and Backus, 2003a; Fomel et al., 2005; Hardage et al.,

2011), which is discussed in Chapter 3. Another category involves matching differ-

ently acquired data, such as time-lapse image registration (Fomel and Jin, 2009) and

merging legacy and high-resolution seismic data (Greer and Fomel, 2018), which is a

primary application in this thesis and is addressed in Chapter 4. The third category

is matching data and ideal models, such as in deconvolution or approximating the

inverse Hessian to improve migration resolution (Hu and Schuster, 1998; Guitton,
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2017; Greer et al., 2018), which is discussed further in Chapter 5. The objective of

these many data matching problems is to approximate the operation to match the

data using a combination of three data matching operations—filtering, scaling, and

shifting. In this thesis, I discuss these three data matching operators, outline several

methods and applications of seismic data matching, and introduce a new method for

matching frequency content between data sets.

The primary inspiration for much of the work in this thesis comes from the

example of matching and merging high-resolution and legacy seismic images, as dis-

cussed by Greer and Fomel (2017b, 2018). In this example, two seismic data sets,

each acquired over the same area but with different acquisition technologies, are first

matched in frequency, amplitude, and time, before being merged together to produce

a third image. This new image includes the best signal characteristics from the two

initial images while minimizing their comparative weaknesses. Much of the theory

behind Chapter 3 was developed in application to this example but was later extended

to other examples. Therefore, I data from this application throughout much of this

thesis.

DATA

This thesis refers to two primary data sets. The first pair, henceforth called the

Apache data sets, are two 2D lines, acquired over the same area but with different

methods, from the Gulf of Mexico. These two images are plotted in the seismic color

map, as in Figure 3.1.

The second pair, the P-cable data sets, are two 3D volumes, acquired over the

same area but with different methods, from a different area from the Apache data
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sets, but also in the Gulf of Mexico (Petersen et al., 2010; Meckel et al., 2017). These

two images will always be plotted in grayscale, as in Figure 3.5. In parts of this thesis,

I show a 2D line from this 3D data set for simplicity of illustration.

Two other data sets, both 2D, were used in this thesis. In Chapter 3, I use two

multi-component images to demonstrate an adaptation for the proposed frequency

balancing algorithm in an application of multi-component image registration (Fomel,

2007a). In Chapter 5, I use the Sigsbee synthetic data set (Paffenholz et al., 2002) in

the application of improving migration resolution using non-stationary matching.

OUTLINE

This thesis is organized as follows. In Chapter 2, I overview the theory behind the

three data matching operations—scaling, shifting, and filtering. In Chapter 3, I

introduce two methods for balancing local frequency content in seismic data sets. In

Chapter 4, I show the first example of data matching: matching and merging high-

resolution and legacy seismic images. In Chapter 5, I show an example of applying

data matching to improve migration resolution. In Chapter 6, I provide concluding

remarks. Finally, in the appendix, I include information on how to reproduce the

results of this thesis.
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Chapter 2

Background

Seismic data exhibit fundamentally non-stationary variations in attributes

such as frequency and amplitude content. For example, Figure 2.1 shows a sam-

ple seismic image and its local frequency content (Greer and Fomel, 2017a). Data

matching problems involve finding some transformation, or set of transformations,

that can be applied to one data set to best match some attribute with another data

set. In data matching applications, in particular, it is crucial to acknowledge the

non-stationary variations present in seismic data. Therefore, any transformations we

might apply in a data matching problem must be variant in all data dimensions to

account for these non-stationary variations.

Local seismic attributes are useful in the analysis of these non-stationary varia-

tions (Fomel, 2007a). The calculation of these attributes uses iterative inversion with

shaping regularization (Fomel, 2007b) to measure signal characteristics in local re-

gions of data, rather than specifying windows or looking at instantaneous attributes.

For the procedures described in this thesis, local attributes are more appropriate

than instantaneous attributes. Take, for example, local frequency (Figure 2.1), as

opposed to instantaneous frequency. Local frequency allows the comparison of fre-

quency content in a local region of samples, as opposed to instantaneous frequency,

which attempts to provide a point by point comparison of frequency values between

images. Because the corresponding reflections between images might not be precisely
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aligned in time, using the local frequency attribute to balance frequency content be-

tween images would allow for more accurate frequency balancing than instantaneous

frequency. Additionally, local frequency is a more geologically accurate attribute than

instantaneous frequency because it honors time-frequency uncertainty and does not

contain physically unrealistic negative or unrealistic high frequency values (Fomel,

2007a).

(a) (b)

Figure 2.1: A seismic image (a) and its local frequency content
(b). Because its local frequency varies both spatially and tempo-
rally, we can say its frequency content is smoothly non-stationary.
chapter-background/../chapter-locfreq/merge legacy,low-freq

In this thesis, I propose solving data matching problems by balancing smoothly

varying non-stationary attributes, such as local seismic attributes, between two data

sets. This is done using three primary data matching operations—filtering, scaling,

and shifting—to effectively balance these attributes across seismic data sets. These

operations are applied to different data sets to match them correctly for analysis or

further processing.

To demonstrate the three matching operations in action, I apply them consec-
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utively to an example trace shown in Figure 2.2(a). The data used in this example

comes from a line from the P-cable data sets. In this example, we want to find a

transformation, or a set of transformations, to apply to the red trace to match with

the black trace. I use the three data matching operators by first filtering (Figure

2.2(b)), then scaling (Figure 2.2(c)), and finally shifting (Figure 2.2(d)). These three

operations are described in more detail in the following sections.

FILTERING

Perhaps one of the most visibly obvious differences between data sets comes from their

difference in frequency content. For example, Figure 2.2(a) shows two traces that need

to be matched; the red trace has visibly higher frequencies than the black trace which

makes it difficult to observe that they may both contain data from the same model.

This makes the correlation of these two signals, both visually and computationally,

difficult as they have information in different frequency bands. In this situation, we

want to remove the higher frequency variations from the red trace to match the lower

frequency content of the black trace.

There are several ways to do this. A näıve first approach would be to apply a

bandpass filter to the red trace such that the passband covers only frequencies that

are present in the black trace. However, this stationary operation does not take into

account the non-stationary frequency variations that may be naturally present in the

data. In order to properly match the data in frequency content, we propose balancing

local frequency content between data sets.

We can do this by applying a non-stationary triangle smoothing operator to

the red trace to match the local frequency content of the black trace. We define the

6



(a)

(b)

(c)

(d)

Figure 2.2: (a) Two traces that need to be matched—we will match the red trace to
the black trace. (b) Red trace after filtering. (c) Red trace from (b) after scaling. (d)
The final result: red trace from (c) after shifting, which now better matches with the
black trace. The amount and order in which these operations is applied affects the
final result (Figure 2.3). chapter-background/dmExample one0,one1,one2,one3

7



radius of this operator as the number of samples in a specified dimension that are

averaged over in a triangle weight. We allow the radius to vary in all dimensions

to account for the potential non-stationary frequency variations present in the data.

This is a linear operation—if we represent the filtering operation by a matrix applied

to the trace represented by a vector, the matrix would be diagonally banded, where

the width of the band at a particular index is related to the size of the smoothing

radius at that point.

Chapter 3 is dedicated to the discussion of how to find this frequency balancing

operator. Figure 2.2(b) shows the two traces after balancing the local frequency

content of the red trace to match the black trace.

SCALING

The second primary data matching operation is scaling. Amplitudes of the data

we are trying to match may not be initially equivalent—scaling attempts to balance

the amplitudes between these data. Scaling is also a linear operation and can be

thought of as a diagonal operation; if the scaling operator is represented by a matrix

multiplication to the data vector, this matrix only contains terms along the diagonal.

In this thesis, the diagonal scaling operator is found by first calculating the

amplitude envelope of the data that need to be matched. Then, the scaling weight

is calculated by smoothly dividing the amplitude envelopes of the two traces to find

the diagonal elements of the scaling operator.
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SHIFTING

If two events are misaligned in time, finding the transformation that correctly aligns

these events is referred to as shifting. Dynamic time warping is a common algorithm

used for the alignment of events of two time series, both for geophysical and other

applications, as diverse as speech recognition and finance (Herrera and van der Baan,

2012; Hale, 2013; Müller, 2007; Tsinaslanidis et al., 2014).

In this thesis, I calculate the shifting operator by finding the time shifts that

maximize local similarity between the two data sets. Local similarity extends the

concept of local seismic attributes to global correlation coefficients and is effective for

measuring the match of seismic events in a local region of samples (Fomel, 2007a).

In certain situations, these data must be correctly aligned in space instead of

time; for example, in a depth-migrated image. In these cases, time shift is a misnomer.

However, because the data we are typically dealing with are time series, the shifting

operation that we find and apply is considered a function of time.

The result after finding and applying the time shift to the red trace to match

it to the black trace is in Figure 2.2(d). This shifting operation is discussed in more

detail in Chapters 3 and 4..

REPRESENTATION OF OPERATORS

Data matching problems are applicable for data sets that have the same physical

model, yet have different characteristics that make their comparison difficult. For

example, two seismic traces that were acquired over the same area but with different

acquisition methods would benefit by applying data matching operations before their

9



direct comparison. These three operations can be applied to one data set to match

it with the other.

When applying one operation, we assume the other two operators have already

been applied, when this may not be the case. This is why we balance local seismic

attributes instead of instantaneous ones—we want the match to be accurate in a

region of data points rather than a point-by-point match. These operators must be

smooth enough such that any misalignment of one attribute does not affect the result

of balancing the others. For example, if a scaling operator is applied before the traces

have been correctly aligned in time by shifting, too precise of an amplitude balancing

operation could inadvertently balance amplitudes to incorrect events.

The order and amount of these operators affects the final result. After cor-

recting for frequency variations, amplitude variations, and time shifts, additional

corrections can be applied to further refine the match if necessary. These three oper-

ators are noncommutative, so the order in which they are applied matters. Applying

filtering before scaling produces a different result from applying scaling before filter-

ing. An illustration of this property is shown in Figure 2.3. In some cases, multiple

rounds of applying these operators and in different orders may be beneficial for the

best match.

Operator Representation
Shifting d2(x) = d1(x+ s(x))
Scaling d2(x) = w(x)d1(x)
Filtering D2(k) = W(k)D1(k)

Table 2.1: Mathematical representation of the three data matching operators.

A summary of the three data matching operations is shown in Table 2.1. In

the stationary case, if scaling is weighting in the time domain, filtering is weighting

10



(a)

(b)

Figure 2.3: (a) A lower-resolution seismic trace (black) and a higher-resolution seis-
mic trace (red) acquired over the same area. (b) Data matching operations are
noncommutative—the order in which they are applied matters. When matching the
red trace to the black trace, the green trace had first smoothing, then amplitude
balancing, and finally shifting; the yellow trace had first amplitude balancing, then
smoothing, and finally shifting. The operation order matters and affects the final
result. chapter-background/dmExample bef,aft
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in the Fourier domain. Chapter 3 discusses a few methods and examples of filtering,

or frequency balancing, between two data sets.
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Chapter 3

Balancing local frequency content in seismic data using
non-stationary smoothing

Seismic data can experience non-stationary frequency variations caused by at-

tenuation. This problem is encountered when matching multiple data sets, such as in

multicomponent image registration, because signals with differing frequency content

are hard to correlate. In this chapter, we introduce two methods for balancing fre-

quency content between data sets while taking into account non-stationary frequency

variations. Both methods involve finding and applying a non-stationary smoothing

operator to minimize the local frequency difference between data sets. Numerical

examples demonstrate that the proposed method improves multicomponent image

registration and matching images of differing resolutions.

INTRODUCTION

Matching seismic data has many applications in geophysical processing methods, such

as multi-component image registration, time-lapse image registration, matching well-

ties to seismic data, and merging seismic data sets (Ursenbach et al., 2013; Fomel

and Backus, 2003b; Lumley et al., 2003; Herrera and van der Baan, 2012). Typically,

the workflow for matching data involves finding the optimal time shift, or amount

Parts of this chapter were first published in Greer and Fomel (2017a), Greer and Fomel (2017b),
and Greer and Fomel (2018). This work was done under the supervision of Dr. Sergey Fomel.

13



of stretching and compressing, of one trace relative to the other that produces the

greatest similarity between the two traces, as seen in dynamic time warping and

local similarity scanning (Hale, 2013; Fomel and Jin, 2009; Herrera et al., 2014).

However, when the two signals that need to be aligned have different spectral content,

their comparison can be difficult. Seismic data contain non-stationary, or spatially

and temporally variant, frequency content caused by attenuation. This problem was

discussed in application to multicomponent image registration by Fomel and Backus

(2003b), who applied frequency balancing methods to improve registration results.

Liu and Fomel (2012) proposed using local time-frequency decomposition (LTFD)

to balance frequencies between multicomponent data during registration. However,

LTFD is a relatively computationally expensive method.

In this chapter, we propose methods for removing non-stationary frequency

differences that limit the effectiveness of matching data. We suggest applying either

of the proposed methods to processing flows that involve matching data before at-

tempting to find the time shift to align their signal content. To balance frequency

content, we use a non-stationary smoothing operator with an adjustable smooth-

ing radius to apply to the higher frequency data set. Our first approach finds the

smoothing operator directly, but it is based on the primary assumption that the data

can be modeled by a summation of Ricker wavelets. Our second approach of find-

ing the smoothing radius is based on understanding what the smoothing operator

physically does, and takes the form of an optimization problem which is solved using

an iterative method. We introduce these methods and apply them to examples of

merging high-resolution and conventional seismic images and multicomponent image

registration.

14



METHOD

Two signals of differing frequencies are more difficult to correlate than signals of sim-

ilar frequencies. For example, Figure 3.5 shows two seismic images representing the

same subsurface, except they have distinctly different spectral content, as shown in

Figure 3.7(a). In order to be directly comparable, these two images should have simi-

lar frequency content. Here, we look at local frequency (Fomel, 2007a), which can be

thought of as a smoothed estimate of instantaneous frequency (White, 1991). Local

frequency is a more geologically accurate attribute than instantaneous frequency be-

cause it honors time-frequency uncertainty and does not contain physically unrealistic

negative or extremely high frequency values (Fomel, 2007a).

In order to balance local frequency content, we propose smoothing the higher

frequency data using a non-stationary triangle smoothing operator with an adjustable

radius. Here, the radius at each point is the number of samples in time that that

specific data point is averaged over in a triangle weight.

We find the temporally and spatially variable smoothing radius to apply to the

higher frequency image to balance local frequency content with the lower frequency

image by taking two approaches. The first approach is finding the smoothing radius

based on assumptions of what the data we are looking at can be represented by,

and the second approach is based on understanding physically what non-stationary

smoothing does to a data set. Both approaches work well in different situations—the

first approach is less computationally expensive than the second approach, but is

only applicable when the two data sets fit the assumptions that are used to calculate

what the smoothing radius is. The second approach finds the smoothing radius in an

iterative manner, but it manages to work well for any data set given to it.
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Theoretical smoothing radius

To demonstrate the effectiveness of finding the smoothing radius using this

method, we use the Apache seismic data sets. The two initial images are shown in

Figure 3.1, and their frequency content are shown in Figure 3.2(a).

To balance the non-stationary frequency variations between data sets, we use

a simple triangle smoothing operator with an adjustable radius. Here, the radius

at each point is the amount of time, in seconds, that that specific data point gets

averaged over in a triangle weight in the temporal direction. We specifically look at

local frequency (Fomel, 2007a), which is a time-dependent frequency attribute, and

can be thought of as a smoothed estimate of instantaneous frequency (White, 1991).

(a) (b)

Figure 3.1: The initial legacy (a) and high-resolution (b) images.

chapter-locfreq/../chapter-merge/apache legacy,hires

This method is based off of the primary assumption that the signal can be

represented by Ricker wavelets convolved with the Earth’s reflectivity series. Because

the data we are working with are seismic amplitudes, this can be a good assumption

(Gholamy and Kreinovich, 2014).

16



(a) (b)

Figure 3.2: Spectra for the entire image display of the legacy (red) and high-resolution
(blue) images before (a) and after (b) spectral balancing using the theoretical method.

chapter-locfreq/../chapter-merge/apache nspectra,hires-smooth-spec

The justification for triangle smoothing is that it is a simple approximation to

Gaussian smoothing. The frequency response of the triangle smoothing filter (Claer-

bout, 1992) is

T (f) = sinc2
(

2πf∆t

2

)
≈ 1− (2πf)2(∆t)2

12
. (3.1)

This frequency response resembles that of a Gaussian:

G(f) = e−αf
2 ≈ 1− αf 2 . (3.2)

If the signals’ spectra can be represented by Ricker wavelets,

Sn(f) = An

(
f

fn

)2

e−( f
fn

)
2

(3.3)

where, in image n, Sn is the frequency spectrum, fn is the peak frequency, and An is

the amplitude, Gaussian smoothing can transform the signal to a different dominant

frequency.
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Because we are smoothing the high-resolution image to match it with the

legacy image, we can relate the high-resolution frequencies, Sh, to the legacy frequen-

cies, Sl, such that

Sl(f) = Ae−αf
2

Sh(f) (3.4)

where A = Al/Ah,

α =
1

f 2
l

− 1

f 2
h

, (3.5)

and the subscripts l and h correspond to the legacy and high-resolution images,

respectively.

Combining equations (3.1), (3.2), and (3.5) leads to the specification of the

triangle smoothing radius as

∆t ≈ 1

2π

√
12

(
1

f 2
l

− 1

f 2
h

)
. (3.6)

Here, ∆t is the radius of smoothing, measured in seconds, applied to the high-

resolution image to match the frequency content with the legacy image at each sample.

The calculated smoothing radius for this data set is shown in Figure 3.3.

We measure local frequencies in both images and apply smoothing specified by

equation (3.6) to the high-resolution image. Because this is only an approximation of

what the smoothing radius should be under ideal conditions, we adjust the constant

12 in the equation to achieve a better match. In this example, this effectively reduces

the difference between the spectral content of the images, as shown in Figure 3.2(b).

Figure 3.4 shows the difference in local frequencies before and after smoothing. After

smoothing, the frequency difference is minimized.

This method works well for simple data sets with overlapping frequency con-

tent. However, more complicated data sets, as seen in the next example, may require
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Figure 3.3: Calculated spatially and temporally variable smoothing radius. This
represents the number of seconds in the temporal direction that the high-resolution
image gets averaged over in a triangle weight to balance local frequency content with
the legacy image at each sample. chapter-locfreq/../chapter-merge/apache rect

additional steps for successful frequency balancing.

Iterative method for calculating the smoothing radius

The theoretical smoothing radius works in some situations, like in the first

example of Chapter 4, but it does not work in situations where little overlap is present

in frequency content between data sets, like in the second example of Chapter 4. In

this case, we use an iterative method to find what the smoothing radius should be

that is based on the physical understanding of what smoothing is doing.

The goal of this method is to find the temporally and spatially variable smooth-

ing radius, R, that minimizes the difference in local frequencies between the two data
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(a) (b)

Figure 3.4: Difference in local frequencies between the legacy and high-resolution
images before (a) and after (b) balancing their frequency content by non-stationary

smoothing. chapter-locfreq/../chapter-merge/apache freqdif,freqdif-filt

sets. This can be shown in the objective function

min
R∈[1,N ]

∥∥∥F[SRdh]− F[dl]
∥∥∥ , (3.7)

where SR is the non-stationary smoothing operator of smoothing radius R, dh is

the higher frequency data, dl is the lower frequency data, F is the local frequency

operator, and N is the maximum size of the smoothing radius. Although smoothing

is a linear operation, the smoothed data, SRdh, depends non-linearly on R. However,

the objective from equation (3.7) is nearly convex, and we choose to use an intuitive

iterative approach to find an approximate smoothing radius.

The main premise behind the method comes from the fact that, in general, the

greater the smoothing radius, the more high frequencies are attenuated by smoothing.

1. The smoothing radius is too small at a specified point if, after smoothing, the

higher frequency data has higher local frequency than the lower frequency data.
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Thus, the smoothing radius must be increased at that point.

2. The smoothing radius is too large at a specified point if, after smoothing, the

higher frequency data has lower local frequency than the lower frequency data.

Thus, the smoothing radius must be decreased at that point.

We apply these assumptions using a line-search method:

R(i+1) = R(i) + cr(i), (3.8)

where R(i) is the smoothing radius at the ith iteration, c is a scalar constant that can

be thought of as the step length, and r(i) is the residual at the ith iteration, which

can be thought of as the search direction, and is defined as

r = F[SRdh]− F[dl] . (3.9)

It can be noted that when equation (3.9) is positive, the higher frequency data still

has a higher local frequency value at that specific point than the lower frequency

data, thus the higher frequency data is under-smoothed and the smoothing radius

should be increased at that point. This follows the form of the first assumption. The

second assumption is used when equation (3.9) is negative. When equation (3.9) is

zero, the correct radius has been found and no further corrections are made. Thus,

it is justifiable to set the search direction from equation (3.8) equal to the residual.

Using the assumptions, we can choose an initial guess for the smoothing radius

and continually adjust the smoothing radius until we achieve the desired result of

balancing the local frequency content between the two data sets. In practice, this

method produces an acceptable solution in approximately 5 iterations and exhibits

sublinear convergence. After smoothing the higher frequency data with the estimated
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radius, we use the lower frequency and smoothed higher frequency data to estimate

time shifts and align the two data sets.

This method is applicable to workflows that require matching data with dif-

ferent frequency content. Here, we demonstrate that using this algorithm to match

high-resolution and legacy seismic images improves the results.

High-resolution seismic data, such as those acquired with the P-cable acqui-

sition system, can produce very detailed images of the near subsurface (Meckel and

Mulcahy, 2016). When compared to conventional seismic images, high-resolution im-

ages have a higher dominant frequency and a wider frequency bandwidth. However,

they usually lack low frequency content and depth coverage that is present in conven-

tional seismic images. As a result, successful interpretation of high-resolution images

can be aided by matching with legacy data coverage over the same area.

Example legacy and high-resolution images of the same subsurface are shown

in Figure 3.5. The first step in matching the two images is to ensure that they both

have a similar frequency bandwidth so they are directly comparable. The average

frequency spectra for the two images are shown in Figure 3.7(a). From this, it is

evident that there is almost no overlap in frequency bandwidth between the two

images. To address this problem, we apply a low-cut filter to the legacy image to

remove some of the lower frequencies that are simply not present in the high-resolution

image. Next, we implement the method described in the previous section to balance

local frequency content between the two images. The difference in local frequencies

(residual, by equation 3.9) between the high-resolution and legacy images before

balancing frequency content and after 5 iterations of the algorithm in equation (3.8)

is shown in Figure 3.8. After balancing local frequencies, the images show a similar

22



(a)

(b)

Figure 3.5: Initial legacy (a) and high-resolution (b) images. These images
show the same subsurface geology, but look remarkably different as the high-
resolution image has distinctly higher frequency content than the legacy image.
chapter-locfreq/merge legacy,hires-agc 23



Figure 3.6: The smoothing radius, which is a function of time and space, this method
produces after 5 iterations. This represents the number of samples in time that the
high-resolution image needs to be smoothed over in a triangle weight to balance local
frequency content with the legacy image. chapter-locfreq/merge rect5

spectral bandwidth (Figure 3.7(b)), which helps increase the correlation between the

two images and makes matching reflections better defined.

After the frequency content is matched, the optimal time shift is found to

align signal content between the legacy and high-resolution images. We then apply

this time shift to the original high-resolution image—the frequency content is only

degraded for the purpose of finding the time shift.

An application of aligning the high-resolution and legacy images is discussed

in Chapter 4.
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(a) (b)

Figure 3.7: Spectral content of the legacy (red) and high-resolution (blue) im-
ages before (a) and after (b) spectral balancing using the theoretical method.

chapter-locfreq/merge nspectra-orig,high-smooth-spec5

Iterative method for calculating the smoothing radius: A modification

The algorithm previously presented works well in cases when one data set has

clearly higher frequency content than the other. However, in some cases, the two

data sets may have similar local frequency content, but they might still need to be

matched. We illustrate a modified version of the previous algorithm by demonstrating

it on an example of multi-component seismic image registration.

Multicomponent seismic image registration is an important step before the

interpretation of P and S images of the subsurface. It involves warping the space of

S images to align reflections with the analogous reflections of P images (Fomel and

Backus, 2003b; Fomel et al., 2005).

Figure 3.9 shows PP and SS images from a 9-component seismic survey (Fomel,

2007a). To properly register the images, we follow the method proposed in Fomel
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et al. (2005). It consists of three primary steps: (1) initial registration of PP and SS

images using initial interpretation and well-log analysis; (2) balancing frequency and

amplitude content; and (3) final registration using residual local similarity scanning.

We incorporate our method of balancing frequency content into the second step in

this process.

Before initial registration, the PP image has much higher frequency content

than the SS image. After the SS image is temporally compressed to PP time for initial

registration, the two images have more similar frequency content. However, additional

frequency balancing is still needed before residual registration. This poses a problem

as neither image has distinctly higher frequencies than the other, so both images need

to be smoothed in different areas to balance frequency content. In order to do this,

we modify the proposed method to include two separate smoothing operators—one

for each image.

(a) (b)

Figure 3.8: Difference in local frequencies (residual) between the legacy and high-
resolution images before (a) and after (b) the 5th iteration of frequency balancing.

chapter-locfreq/merge freqdif,freqdif-filt5
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We modify the objective in equation (3.7) as

min
R∈[−N,−1]∪[1,N ]

∥∥∥F[SRpdp]− F[SRsds]
∥∥∥ , (3.10)

where dp and ds are the PP and SS images, respectively, and SRp and SRs are the

non-stationary smoothing operators for the PP and SS images, respectively. We also

modify the residual from equation (3.9) as

r = F[SRpdp]− F[SRsds] . (3.11)

The ideal radius is still found using the same line-search from equation (3.8), except

we allow the smoothing radius to be negative. Physically, a negative smoothing radius

would signify that the image should be sharpened at that particular point instead of

smoothed. In this case, instead of trying to sharpen the PP image at that particular

point, we choose to smooth the SS image by the negative part of the smoothing radius.

Thus, we define the ith components of Rp and Rs as

Rp,i =

{
Ri if Ri ≥ 1

1 otherwise
(3.12)

and

Rs,i =

{
|Ri| if Ri ≤ −1

1 otherwise
(3.13)

where Ri is the ith component of R and a radius of 1 represents no smoothing. This

allows each image to be smoothed in different areas to balance the frequency content

between the two images.

The results of using this spectral balancing method are shown in Figure 3.10.

Comparable results were achieved in Liu and Fomel (2012), who used local time-

frequency decomposition (LTFD) to balance the spectral content between the two
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(a)

(b)

Figure 3.9: Initial PP (a) and SS (b) images. chapter-locfreq/vecta pp,ss
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images. However, the method we propose in this chapter is more straightforward and

significantly less computationally expensive.

So far, this algorithm and its modification have been discussed when the

smoothing radius is only calculated along one dimension. However, Chapter 5 pro-

vides an application where the smoothing radius is calculated in multiple directions.

CONVERGENCE ANALYSIS

Because this algorithm was developed from observations and intuition based on what

smoothing is physically doing, no error analysis or convergence criteria has been

developed in this thesis. However, it is observed that this algorithm generally exhibits

sublinear convergence. Additionally, the initial guess for what the smoothing radius

should be negligibly impacts the final result. Figure 3.11(a) shows the convergence

of the algorithm from equation (3.8) when applied to the P-cable data set from the

second example in this chapter (Figure 3.5). It is evident that no matter the initial

guess, the resulting convergence is relatively unaffected, and with the correct choice

of step length c, converges in few iterations. After convergence, continuing iterations

do not affect the final result.

Figure 3.11(b) shows the convergence when choosing different values of c, the

step length from Equation (3.8). From this, it is evident that the step length is

important for fast and stable convergence. If too large a step length is chosen, the

method does not converge to the ideal solution. If the step length is too small, the

algorithm takes many more iterations to converge. With the “correct” step length,

however, the algorithm usually converges in fewer than 10 iterations in practice.
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(a)

(b)

Figure 3.10: Interleaved PP and warped SS traces before (a) and after (b) frequency
balancing and residual registration. After registration, the signal content between the
two initial images is more aligned; for example, the reflections around 0.3 and 0.6 s.
This indicates a successful registration. chapter-locfreq/vecta before,after
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Figure 3.11: Convergence of the algorithm from Equation (3.8) for (a) different initial
guesses, and (b) different choices of c, the step length, using the theoretical radius as

the initial guess. chapter-locfreq/convergence all,scalar
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CONCLUSIONS

Comparing signals with differing frequency content is difficult because signals with

differing frequencies are hard to correlate. In this chapter, we proposed two meth-

ods of balancing frequency content between data. The first one takes a theoretical

approach of what we expect the data to be, and the second one takes the form of an

optimization problem solved by a simple iterative algorithm. This algorithm is a rel-

atively inexpensive and effective method compared to previously proposed methods

of balancing frequencies between data sets. We applied these methods to examples

of matching seismic images of differing resolution and for multicomponent image reg-

istration.
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Chapter 4

Matching and merging high-resolution and legacy seismic
images

When multiple seismic surveys are acquired over the same area using different

technologies that produce data with different frequency content, it may be beneficial

to combine these data to produce a broader bandwidth volume. We have developed

a workflow for matching and blending seismic images obtained from shallow high-

resolution seismic surveys and conventional surveys conducted over the same area.

The workflow consists of three distinct steps: (1) balancing the amplitudes and fre-

quency content of the two images by non-stationary smoothing of the high-resolution

image, (2) estimating and removing variable time shifts between the two images, and

(3) blending the two images together by least-squares inversion. Our workflow is

applied successfully to images from the Gulf of Mexico.

INTRODUCTION

Modern high-resolution seismic acquisition systems, such as P-cable (Petersen et al.,

2010; Meckel and Mulcahy, 2016), can produce detailed images of the subsurface at

shallow depths. These images often need to be compared with those previously pro-

duced using legacy images from conventional seismic acquisition. In comparison with

Parts of this chapter were first published in Greer and Fomel (2017b). The peer-reviewed journal
version appears as Greer and Fomel (2018). This work was done under the supervision of Dr. Sergey
Fomel.
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high-resolution images, conventional images have generally lower frequency content

and correspondingly lower resolution, but better signal content at greater depth. To

reconcile the differences between the two types of images, they need to be properly

matched.

Analogous problems occur when interpreting images from multicomponent

seismic acquisition. In particular, single-component PP and converted PS images

often exhibit significantly different frequency content and need to be balanced for

accurate registration (Hardage et al., 2011; Fomel and Backus, 2003a; Fomel et al.,

2005).

When multiple data sets are acquired over the same area using different tech-

nologies, it is likely that these data sets contain signal content from different frequency

bands, which correspondingly contain unique information about the subsurface. In or-

der to utilize all available information, it may be beneficial to produce a consolidated

broad-bandwidth volume that combines these data sets. Many previous methods of

seismic data merging have been developed for the purpose of increasing the spatial

coverage of the merged volume by combining data from partially overlapping areas.

This usually involves steps such as rebinning for data alignment, along with spec-

tral and phase matching. As a result, both the initial and resultant merged images

poses similar signal characteristics, most notably spectral content (Mohan et al., 2007;

Zhou et al., 2014; Al-Inaizi et al., 2004). However, previously Carter and Pambayun-

ing (2009) were successful in applying a frequency domain merge to two separate

seismic volumes over the same area to broaden the effective bandwidth.

In this chapter, we consider the problem of matching seismic images obtained

in the same area with different resolution. Using techniques borrowed from multi-
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component image processing (Fomel et al., 2005), we propose a multistep approach.

First, we balance the two images in amplitude and frequency content. As a result, the

resolution of the high-resolution image is temporarily degraded to match the resolu-

tion of the legacy data. Next, we measure shifts between images using local similarity

scanning (Fomel, 2007a; Fomel and Jin, 2009). Finally, when the images are aligned

and matched, we create a blended image using least-squares inversion in the time

domain. The blended image has a wider frequency bandwidth than the two initial

images, along with coherent signal content with depth from the legacy image and

detailed shallow coverage from the high-resolution image.

We test the proposed approach using data from the Gulf of Mexico. A 2D

image is used to illustrate the method, followed by an example applied to 3D data.

METHOD

The initial legacy and high-resolution example images are shown in Figure 4.1. They

both underwent standard marine processing flows and are assumed to be optimally

processed. The images show similar structures, particularly at shallow depths, but

with strikingly different resolution. The main difference comes from the broader

frequency bandwidth of the high-resolution image in comparison with that of the

legacy image. Therefore, our first step in comparing the two images is balancing their

spectral content.

Balancing spectral content

Analyzing the spectra of the legacy and high-resolution images, as seen in

Figure 3.2(a), it is clear that the high-resolution image has a wider range of frequencies
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(a) (b)

(c)

Figure 4.1: The initial legacy (a) and high-resolution (b) images. The merged image
(c) is the final product of the proposed workflow: the combination of both the legacy

and high-resolution images. chapter-merge/apache legacy,hires,merge2-reverse
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with a higher dominant frequency than the legacy image. In order to match these

images, our first step is to balance their spectral content. We can achieve this by

attenuating the high frequencies of the high-resolution image to match the lower

frequency content of the legacy image. One approach to frequency balancing is to

apply a stationary bandpass filter to the high-resolution image. However, this does

not take into account local frequency variations in each image caused by seismic wave

attenuation. A more effective method, which accounts for temporally and spatially

variable frequency content that is present in most seismic data, is to apply a non-

stationary filter using frequency information from both images. To accomplish this,

we use a simple triangle smoothing operator with an adjustable radius. Here, the

radius at each point is the amount of time, in seconds, that that specific data point

gets averaged over in a triangle weight in the temporal direction. In this example, we

find the radius of smoothing using the theoretical approach described in Chapter 3,

so

∆t ≈ 1

2π

√
12

(
1

f 2
l

− 1

f 2
h

)
. (4.1)

Here, fl and fh are the local frequencies of the legacy and high-resolution images,

respectively, and ∆t is the radius of smoothing, measured in seconds, applied to

the high-resolution image to match the frequency content with the legacy image at

each sample. The spectral content of the high resolution image after balancing local

frequencies clearly closer resembles that of the legacy image, as shown in Figure

3.2(b).

This method works well for simple data sets with overlapping frequency con-

tent. However, more complicated data sets, as seen in the next example, may require

additional steps for successful frequency balancing.
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In addition to frequency balancing, we initially attempted to account for

wavelet phase differences between data sets at this step. However, we saw this had a

negligible impact on the final result, so we decided not to include it in this method.

Measuring time shifts

After balancing the spectral content, we attempt to account for possible time

shifts of the high-resolution image relative to the legacy image, which can be caused

by changes in acquisition and processing parameters. We measure this shift using

local similarity scanning (Fomel, 2007a; Fomel and Jin, 2009). In this method, we

detect the relative time shift by first calculating the local similarity at different time

shifts of the high-resolution image relative to the legacy image (Fomel and Jin, 2009).

From this, the trend of the highest similarity is picked and represents the relative

time shift between the two images.

Next, we apply the estimated time shift to the original high-resolution image—

the frequency content is only degraded for the purpose of finding the time shift that

best aligns the signal content between the two images. The differences between the

two images before and after the time shift correction are shown in Figure 4.2, and

demonstrate a noticeably better match resulting from the time shift. Similar results

were achieved using amplitude-adjusted plane-wave destruction, which involves bal-

ancing amplitudes and temporally aligning the data sets simultaneously (Phillips and

Fomel, 2016).

Creating the blended image

Because the high-resolution and legacy images contain information about the

same subsurface, we can attempt to create an optimal image of this area by blending
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(a)

(b)

Figure 4.2: Difference between the legacy and smoothed high-resolution images before
(a) and after (b) aligning the data sets. Before accounting for time shifts, much of the
signal content did not align in time, so coherent reflections were subtracted out. After
accounting for time shifts, the reflections are more aligned, so much of the subtracted
information is noise. chapter-merge/apache diff0,diff1
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the two images together to combine the strengths of each while minimizing their weak-

nesses. We can achieve this by imposing two conditions. First, the blended image

should match the high-resolution image, particularly in the shallow part. Second, af-

ter smoothing with the non-stationary smoothing operator, the blended image should

match the legacy image. We combine the two conditions together in the least-squares

system [
Wh

WlS

]
b ≈

[
Wh h

l

]
, (4.2)

where h denotes the high-resolution image, l is the legacy image, b is the desired

blended image, Wh and Wl are the diagonal weighting matrices for the high-resolution

and legacy images, respectively, and S is the non-stationary smoothing specified by

equation (4.1). The formal solution of the least-squares problem (4.2) is

b =
(
Wh

2 + STWl
2S
)−1 (

Wh
2 h + ST Wll

)
. (4.3)

Alternatively, equation (4.3) can be rearranged as

b =
(
Wh

2 + STWl
2S
)−1 (

Wh
2 h + STWl

2Sh− STWl
2Sh + ST Wll

)
=

(
Wh

2 + STWl
2S
)−1 ((

Wh
2 + STWl

2S
)
h + STWl (l−WlSh)

)
= h +

(
Wh

2 + STWl
2S
)−1

ST Wl (l−WlSh) , (4.4)

which makes it evident that the merged image is simply the high-resolution image

with some changes.

The weights, Wh and Wl, are applied to the images to bring out the desired

qualities from each image. For example, because we prefer the high-resolution image

in the shallow section, we weight it more significantly there and gradually taper

the weight to preference the legacy image with depth. In addition, we estimate the
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legacy weight, Wl, to balance the legacy image’s amplitudes with respect to the high-

resolution image. The specific values we used for the weights are shown in Figure

4.3.

We implement the inversion in equation (4.4) iteratively using the method

of conjugate gradients (Hestenes and Stiefel, 1952). The resultant blended image,

shown in Figure 4.1(c), retains the higher frequencies from the high-resolution image

while incorporating the lower frequencies from the legacy image (Figure 4.4). The

broader frequency bandwidth corresponds to an increase in resolution and leads to

a more detailed and interpretable image. As a result, the blended image resembles

the high-resolution image but has a marked decrease in noise and extended coverage

with depth.

Although the method presented in this chapter is applied to post-stack images,

the general method is likely flexible enough to be extended to pre-stack data. Appli-

cations of matching legacy and high-resolution seismic data are also seen in time-lapse

image registration, where the accurate interpretation of 4D time-lapse data heavily

depends on dataset alignment and uniform processing (Ross and Altan, 1997). The

method from this chapter could also be used in 4D time-lapse processing; particularly

the steps involving frequency balancing and accounting for time shifts.

P-CABLE EXAMPLE

Our second example refers to data from the inner shelf of the Gulf of Mexico, just

off of San Luis Pass, Texas (Meckel et al., 2017). The high-resolution P-cable data

set was acquired from a shallow marine environment in the Gulf of Mexico. The area

of interest for this survey was the near subsurface, and a high frequency source was
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(a)

(b)

Figure 4.3: The weights for the high-resolution (a) and legacy (b) images for the
least-squares merge. The high-resolution weight is strongly weighted in the shallow
part and blends to favor the legacy image with depth. The legacy weight is selected
to boost the legacy image’s relative amplitudes to match that of the high-resolution
image. chapter-merge/apache hweight,lweight-reverse
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Figure 4.4: The spectra of the entire image display of the legacy (red dashed), high-
resolution (blue dotted), and merged (magenta solid) images for the first data set.

chapter-merge/apache nspectra22-reverse
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used which allows for exceptional resolution in the shallow section, at the expense of

less coherent signal information at depth caused by attenuation (Meckel and Mulcahy,

2016). In addition, very little low-frequency information is present in the P-cable data

because of the high-frequency source used, which makes balancing spectral content

particularly difficult. The other image comes from legacy data coverage over the

same area, which has better signal continuity at depth than the high-resolution P-

cable data. This is apparent by looking at the first few hundred milliseconds of data

for both data sets (Figure 4.5).

Due to the nature of acquisition, the high resolution image has very dense

spatial coverage, providing detailed time slices of the near subsurface (Meckel and

Mulcahy, 2016). The legacy image has lower spatial resolution. As a result, when

matching the high-resolution and legacy images spatially, the high spatial resolution

of the high-resolution image must be degraded to match that of the legacy image. We

rebinned the legacy and high-resolution images to align them spatially for comparison

(Figure 4.7). We chose to spatially down-sample the high-resolution image to match

the legacy image as opposed to interpolating the legacy image to the high-resolution

image’s spatial grid to prevent potentially introducing inaccurate data in the merged

image.

There is a definite separation in frequency content when comparing the legacy

and high-resolution images (Figure 4.6). Because of little overlap in frequency band-

width, balancing their spectral content is challenging. In addition, a primary as-

sumption made in deriving the theoretical smoothing radius (equation 4.1) is that

the signal is modeled by a summation of Ricker wavelets, which may not be a cor-

rect assumption. As a result, additional steps must be taken beyond applying the

smoothing specified by equation (4.1) to ensure matching frequency content.
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(a)

(b)

Figure 4.5: The first 600 ms of data from a sample line from the legacy, high-
resolution, and merged image (a). The same images with depth for the legacy, high-
resolution, and merged images (b). The merged image resembles the high-resolution
image in the shallow parts and incorporates the more coherent lower frequency infor-
mation from the legacy image with depth. chapter-merge/pcable window1,window2
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Figure 4.6: The spectral content of the entire image display of the legacy (red dashed),
high-resolution (blue dotted), and resultant merged (magenta solid) images for the

second data set. chapter-merge/pcable nspectra2
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We first apply a low-cut filter to the legacy data to remove the low frequency

information that is simply not present in the high-resolution image. Next, we adjust

the non-stationary smoothing radius using the simple iterative algorithm (Greer and

Fomel, 2017a) that was described in Chapter 3.

After this, we use the low-cut filtered legacy and smoothed high-resolution

images to find estimated time shifts we need to apply to the high-resolution image to

align the reflections with the legacy image. Then, we apply this estimated time shift

to the original high-resolution image and blend it with the original legacy image as

specified by equations (4.2) and (4.4).

The resultant merged image is shown in Figure 4.7(c). The frequency content

of the merged image is shown in Figure 4.6. Here, the merged image spans the fre-

quency bandwidth of the two initial images, thus producing a high resolution volume

including optimal signal characteristics from the two initial images.

CONCLUSIONS

We propose an approach to matching seismic images of different resolutions. Our first

step is non-stationary smoothing of the high-resolution image to match the spectral

content and amplitudes of the legacy image. Next, we estimate the relative time shifts

using local similarity scanning. After matching the two images, we create a blended

image by least-squares inversion, which effectively combines the best features of the

two images: the broader frequency bandwidth of the high-resolution image with the

reflection continuity and deeper coverage of the legacy image. The final result is an

interpretable blended image that has higher temporal resolution than either of the

two initial images. Two example applications using high-resolution and legacy seismic
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(a) (b)

(c)

Figure 4.7: The legacy (a), high-resolution (b), and resultant merged (c) images of

the second data set. chapter-merge/pcable2 legacy4,hires4,merge3
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images from the Gulf of Mexico demonstrate the effectiveness of our method.
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Chapter 5

Improving migration resolution by approximating the
least-squares Hessian using non-stationary amplitude and

frequency matching

We propose using two non-stationary operators to represent the amplitude

and frequency variations in the least-squares Hessian to account for the principal

differences between conventional and least-squares migrated images. The calculation

and application of these operators are computationally inexpensive when compared to

one iteration of least-squares migration, and it increases the resolution and amplitude

fidelity of the migrated image. Successful results are achieved on an application of

reverse-time migration to the Sigsbee synthetic data set.

INTRODUCTION

Least-squares migration can produce an accurate migrated seismic image. However,

the process may be computationally expensive as it is typically performed in an itera-

tive manner, where each iteration involves forward modeling and migration. Although

conventional seismic migration is less computationally expensive than least-squares

migration, it generally contains migration artifacts affecting amplitude fidelity and

resolution (Dong et al., 2012; Dai and Schuster, 2013). This can be attributed to the

Parts of this chapter were first published in Greer et al. (2018). This work was done under the
supervision of Dr. Sergey Fomel, and Dr. Zhiguang Xue assisted in the migration of the Sigsbee
synthetic data set.
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fact that, while least-squares migration inverts for subsurface reflectivity by finding

the least-squares model solution, standard migration amounts to applying a single

adjoint operation (Claerbout, 1992).

Various methods have attempted to correct these differences by finding and

applying an approximation to the inverse Hessian operator, H−1 =
(
LTL

)−1
, to a

conventional migrated image. Here, L is a standard forward-modeling operator, and

LT is its adjoint—the migration operator. These methods usually take the form of two

approaches—for preconditioning before least-squares migration and as a single oper-

ation to improve accuracy of a conventionally migrated image. Previously, this has

been done by migration deconvolution (Hu et al., 2001; Yu et al., 2006), approximat-

ing the diagonal of H−1 to account for amplitude effects (Rickett, 2003; Sacchi et al.,

2007), and by finding and applying a bank of non-stationary matching filters (Gui-

tton, 2004, 2017) or deblurring filters (Aoki and Schuster, 2009) to a conventionally

migrated image. This traditionally is done using a sliding window approach, where

windowed regions and partial overlap regions are specified, and different matching

filters are specified in each region (Schuster, 2017).

In this thesis, we take a different approach. We note that the two primary

differences between least squares migrated images and conventional migrated images

are amplitude and frequency variations (Hou and Symes, 2015, 2016). Here, we treat

this as a data matching problem between two conventionally migrated images, and

find separate operations to account for both amplitude and frequency variations.

This approach enables us to rely on local seismic attributes to measure and

apply amplitude and frequency balancing operations instead of using a sliding window

approach (Fomel, 2007a). This allows for the smooth estimation and application of
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these matching operations instead of applying them in discrete windows. Because

the operations for balancing amplitude and frequency content are calculated and

applied separately from each another, the effect of each operation can be adjusted

independently, which is another advantage of the proposed method. To test the

proposed approach, we apply this method to an example of reverse-time migration

on the Sigsbee synthetic data set (Paffenholz et al., 2002).

THEORY

The goal of least-squares migration is to find the image, r̂, that minimizes

p(r̂) =
1

2
‖d− Lr̂‖22 , (5.1)

where L is the forward modeling operator, representing seismic wave propagation

through the subsurface, and d is the acquired seismic data. This can be solved by

the least-squares formulation to find r̂:

r̂ =
(
LTL

)−1
LTd , (5.2)

where the migration operator, LT, is adjoint to the forward modeling operator and

is typically sparse, and
(
LTL

)−1
is the inverse Hessian operator. Equation (5.2) is

usually solved iteratively, typically requiring multiple iterations of forward model-

ing and remigrating the seismic image (Kuehl and Sacchi, 2003; Xue et al., 2016).

Conventional migration is less computationally expensive:

m0 = LTd. (5.3)

However, conventionally migrated images generally exhibit less correct amplitude

and frequency content than least-squares migrated images (Dutta et al., 2014). By
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combining equations (5.2) and (5.3), it is evident that

r̂ =
(
LTL

)−1
m0 , (5.4)

so m0 is a distorted version of r̂, and r̂ can be recovered from m0 by finding a good

approximation of
(
LTL

)−1
.

METHOD

In order to approximate
(
LTL

)−1
, we follow the modeling and remigration process of

Guitton (2004). We begin by forward modeling the migrated image, m0:

d1 = Lm0 . (5.5)

We then remigrate d1:

m1 = LTd1 =
(
LTL

)
m0 , (5.6)

and then find the operator,
(
LTL

)−1
, that satisfies

m0 =
(
LTL

)−1
m1 . (5.7)

Therefore, the inverse Hessian operator, H−1 =
(
LTL

)−1
, that must be applied to m0

to obtain r̂ can be calculated by first finding the transformation, H, that maps m0

to m1, and then inverting it. This can be interpreted as a data matching problem

between m1 and m0.

m0 m1r̂

H

H−1 H−1

H
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(a)

(b)

Figure 5.1: The Sigsbee model reflectivity (a), and migration velocity model (b).

chapter-mighes/sigsbee mod,vel-migration
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(a)

(b)

Figure 5.2: The first migrated image, m0 (a), and the second migrated image, m1

(b). chapter-mighes/sigsbee image0,image1
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Because the primary differences between conventionally migrated images and

least-squares migrated images amount to amplitude and frequency variations, we

use two separate non-stationary operators to represent the forward Hessian—one

to account for amplitude variations, and the other to account for frequency varia-

tions. Therefore, our approximation of H can be calculated from some application of

a non-stationary amplitude balancing operator, A, and a non-stationary frequency

balancing operator, S. We first calculate the forward Hessian because the forward

frequency balancing operation, S, is well defined and simple to calculate. We then

invert our approximation to the Hessian and apply it to m0 to correct the amplitude

and frequency content of the migrated image.

Amplitude operator

First, we choose to find an amplitude balancing operation that, when applied to

m0, balances the amplitudes of m0 with respect to m1. This operation can be equated

to a trace-by-trace multiplication of a diagonal matrix to each trace, where the matrix

changes for every trace. We estimate it by first calculating the amplitude envelope

of the traces in m0 and m1, and then smoothly dividing them. The corresponding

diagonal weighting operator, A, can be applied such that m1 ≈ Am0 to balance the

amplitudes of each trace. Because this is a linear operation that only has diagonal

elements, finding the inverse operator, A−1 is trivial.

Frequency operator

In addition to amplitude corrections, we also attempt to account for the de-

crease in resolution of a conventional migrated image compared to its corresponding

least-squares migrated image. This loss in resolution can be equated to the fact that
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LTL acts as a blurring operator, where the conventional migrated image is a blurred

version of the ideal least-squares migrated image (Hu et al., 2001). We choose to

approximate this blurring using non-stationary triangle smoothing.

We begin by first calculating the local frequency of the two initial images

(Fomel, 2007a). Local frequency is a temporally and spatially varying frequency

attribute that smoothly varies across the image without windows. Our goal is to find

a transformation that we can apply to m0 that matches the local frequency content

with m1. To do this, we propose using non-stationary triangle smoothing. This

approach involves finding and applying a non-stationary smoothing operator, which

is the number of samples, in both dimensions, that m0 will be averaged over in a

triangle weight, to balance the local frequency content with m1.

We find the smoothing radius iteratively using the method of Greer and Fomel

(2017a) from Chapter 3, with a modification that allows the smoothing radius to be

calculated in both spatial directions. Essentially, this is found by choosing an initial

guess of a smoothing radius, R(0), and updating it iteratively such that

R(i+1) = R(i) + α [F[SR(i)m0]− F[m1]] , (5.8)

where F is the local frequency operator, SR(i) is the smoothing operator of radius R

at the ith iteration, and α is a scalar constant that represents the step length. After

a small number of iterations, the smoothing operator is found that, once applied to

m0, balances local frequency content with m1.

For this particular application using depth migration, this operator should

technically be specified to balance wavenumber instead of frequency. However, it is

kept as frequency to keep consistent terminology with the algorithm developed in

Chapter 3.
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(a)

(b)

Figure 5.3: The forward amplitude balancing weight, A (a) and the smooth-
ing radius (b), which represents the number of samples in both dimensions
that m0 must be smoothed over in a triangle weight to balance the local fre-
quency content with m1. This represents the forward smoothing operation, S.
chapter-mighes/sigsbee a0,rect10b
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Calculating the inverse Hessian

Now that we have found the forward operators that separately balance am-

plitude and frequency content from m0 to m1, where m1 ≈ Hm0, we want to find

what combination of A and S best approximates H. Since H = LTL is symmetric,

we want our approximation of H to be as close to symmetric as possible. Therefore,

we define H as

H ≈ A
1/2SA

1/2 , (5.9)

where A is the operator that balances the amplitudes of m0 with respect to m1,

and S is the operator that balances the local frequency content of m0 with respect

to m1, both defined previously. Applying the operations in this order allows the

approximation of H to be symmetric because both A and S are symmetric operations.

Splitting up our approximation to the Hessian into two separate operators allows us

to control how much of each operation and the order of each operation goes into

correcting the image, and see how it affects the resulting image. Now that we have

found the forward Hessian, H, such that Hm0 ≈m1 using data matching operators,

we want to find the inverse of this operator, H−1, such that r̂ ≈ H−1m0 provides us

with the least-squares image. This is found as

H−1 ≈
(
A

1/2SA
1/2
)−1

= A
− 1/2S−1A

− 1/2 . (5.10)

Because the amplitude operators only contain diagonal terms, they are simple

to invert. However, S−1 is non-trivial to calculate since inverse smoothing can create

physically unrealistic high-frequency data if inverted incorrectly without regulariza-

tion.

Figure 5.4 shows transfer functions for a stationary forward and inverse tri-

angle smoothing operator of a radius of 10 samples. In the forward case, triangle
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Figure 5.4: Transfer functions for a stationary forward triangle smoothing operator
(blue) and its inverse (red). chapter-mighes/triop tf

smoothing acts as a low-pass filter. However, its inverse can introduce high frequency

information, which is physically unrealistic for the data we are working with.

Therefore, S−1 must be calculated with care to ensure the inverted data is

physically plausible. We iteratively invert S using shaping regularization (Fomel,

2007b), where the shaping operator is a bandpass filter picked to ensure the passband

contains only physically possible frequencies for the given data set. The cost of

applying our approximation to H−1 in equation (5.10) is O(N), where N is the image

size. The constant is small, typically around 10 for the number of iterations, and

the calculation and application of this approximation is computationally insignificant

compared to one iteration of least-squares migration.
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EXAMPLE

We demonstrate the effectiveness of this method on the 2D Sigsbee model. The

Sigsbee2A 2D synthetic data set was created to mimic the geology of the Sigsbee

escarpment in the Gulf of Mexico (Paffenholz et al., 2002). A fixed-spread acquisition

survey is generated, which consists of 301 shots spaced every 122 m. The source

wavelet for generating the synthetic data is a Ricker wavelet centered at 10 Hz. The

record length of the synthetic data is 10 s with a sampling interval of 4 ms. We use

reverse-time migration (RTM) as our migration operator.

Figure 5.5: The corrected migrated image, found by applying equation (5.10) to m0.

chapter-mighes/sigsbee migdec-shap

We begin with the sub-surface reflectivity model (Figure 5.1(a)) and migration

velocity model (Figure 5.1(b)). Next, we forward model the seismic data and migrate

it to obtain our first conventionally migrated image, m0 (Figure 5.2(a)). Then, we

forward model m0 and remigrate that data to obtain m1 (Figure 5.2(b)). This pro-
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vides us with the two images, m0 and m1, that we can use to find the operation H

that maps m0 to m1.

Next, we calculate and apply the data matching operations as described in

the previous section. The forward amplitude balancing weight, A, is shown in Figure

5.3(a). The calculated radius for the forward smoothing operation is shown in Figure

5.3(b). After applying these two operators to m0 as described by equation (5.10), we

produce the corrected migrated image, as shown in Figure 5.5. This corrected image

better represents the subsurface reflectivity than the conventionally migrated image

(Figure 5.2(a)), as it exhibits more correct amplitude content and higher resolution

comparable with the reflectivity model.

Figure 5.6 shows a windowed section of the reflectivity model, the conven-

tionally migrated image, and the corrected migrated image. The corrected migrated

image exhibits clearly higher resolution and has more correct and consistent ampli-

tude content than the conventionally migrated image.

In addition to directly applying this operator to the conventionally migrated

image to improve resolution, this operator can be used as a preconditioner in iterative

least-squares migration. In this case, the corrected migrated image could be used as

an initial model for least-squares migration for faster convergence.

CONCLUSIONS

Least-squares migration can produce an accurate migrated image, but it is more

computationally expensive than conventional migration. In this chapter, we apply an

approximate inverse Hessian operator to a conventional migrated image to approx-

imate the least-squares migrated image. Because the primary differences between
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(a) (b)

(c)

Figure 5.6: The first migrated image (a), the corrected mi-
grated image (b), and the Sigsbee model reflectivity (c).

chapter-mighes/sigsbee image0-w3,migdec-w3,mod-w3
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least-squares migration and conventional migration amount to amplitude and fre-

quency variations, we approximate the forward Hessian by calculating frequency and

amplitude matching operators. The amplitude matching operator is found by cal-

culating the amplitude envelopes of migrated and remigrated images and smoothly

dividing them, and the frequency matching operator is found using an iterative algo-

rithm and non-stationary smoothing. The Hessian is approximated by a combination

of these two operators to ensure symmetry. This method involves a windowless ap-

proach and is cheap to calculate and apply. Additionally, by defining the Hessian

with two separate operators, we can examine, and control, the “ingredients” of the

Hessian operator, and see how changing them impacts the final image.

After the forward Hessian is calculated, we invert it iteratively using shaping

regularization, and apply it to the conventionally migrated image to get an approx-

imation of the least-squares migrated image. Successful results are achieved on the

2D Sigsbee synthetic model with reverse-time migration as the migration operator.
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Chapter 6

Conclusions

In this thesis, I discussed several methods and applications of data matching

in seismic data analysis. Chapter 2 introduced on introducing the three data match-

ing operators that are used in this thesis—shifting, scaling, and filtering. Chapter 3

introduced different methods of frequency balancing using non-stationary smoothing.

The first method to find the non-stationary smoothing radius, or number of samples

each data point is averaged over with a triangle weight, took a theoretical approach

based on the assumption that the data we observe can be represented by a super-

position of Ricker wavelets. This method worked well in certain situations, but was

not robust enough to work for all of the given data sets. In the second method, I

introduced an iterative algorithm to find the smoothing radius. In my experiments,

this method converges quickly and works well in several presented situations. Finally,

a modification to this algorithm was shown that allows adaptive smoothing for more

complex data sets.

This chapter also discussed two applications of these algorithms. The fre-

quency balancing algorithm was demonstrated on an application to matching high-

resolution and legacy seismic images, and the modified algorithm was demonstrated

on an application to multicomponent seismic image registration.

Chapter 4 went into more detail of the application of matching and merging

high-resolution and legacy seismic images. This example takes two seismic volumes,

65



acquired over the same area but using different technologies, and first matches them

before merging them together to produce an optimized third image. First, I demon-

strated the method on a 2D line from the Gulf of Mexico. Then, I applied the method

to a 3D seismic volume from a different part of the Gulf of Mexico.

Chapter 5 discusses another application of improving migration resolution by

approximating the least-squares Hessian using non-stationary data matching opera-

tions. I showed that an approximation to the least-squares Hessian can be calculated

by solving a data matching problem between two conventionally migrated images,

and the Hessian can be represented by the combination of amplitude and frequency

balancing operations. I applied the proposed approach to a 2D synthetic Sigsbee data

set, a traditional benchmark for imaging algorithms.

FUTURE WORK

In the future, the work presented in Chapter 5 should be extended to involve real data

and 3D examples. It could also benefit from comparing the results of the proposed

approach to previous approaches presented to approximate the least-squares Hessian

(Hu and Schuster, 1998; Hu et al., 2001; Yu et al., 2006; Sacchi et al., 2007; Aoki and

Schuster, 2009; Dong et al., 2012; Dai and Schuster, 2013; Casasanta et al., 2017), to

see how it compares in different situations.

Another extension of this data matching procedure may be to incorporate the

phase of the signal to be matched. Negligible improvements were made when trying

to incorporate phase corrections into the high-resolution and legacy data matching

problem of Chapter 4. However, other data matching problems could benefit from

these corrections.
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The newly developed field of deep learning may also benefit from including

these data matching techniques in the parameterization, as specifically tailoring the

neural networks to work with geophysical data in this manner may produce better

results.

Several applications of data matching were discussed in this thesis. However,

many applications remain unaddressed from a data matching standpoint. Problems

such as seismic and well-log tying, deconvolution, automatic gain control (AGC),

and surface-related multiple elimination (SRME) can also be recast as data matching

problems. Looking at these problems in a new light may bring advancements to

computational geophysics.
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CODE

The examples in this thesis were implemented using the Madagascar open-source soft-

ware environment for reproducible computational experiments (Fomel et al., 2013).

The package is available at http://www.ahay.org/.

The reproducible document for the results in this thesis, including code, is

available at http://www.sygreer.com/research/honorsThesis. However, some of

the data used in this thesis are proprietary, so those results may not be directly

reproducible.

For brevity in this thesis, code is only included for one example of the main

frequency balancing algorithm presented in Chapter 3. The code for the rest of the

examples in this thesis are available online at the URL above.

Table 1: List of figures in this thesis and the locations of scripts and programs to
generate them

Figures Directory Listings
2.1 chapter-locfreq/merge/ 1, 2, 3
2.2, 2.3 chapter-background/dmExample/ —
3.1, 3.2, 3.3, 3.4 chapter-merge/apache/ —
3.5, 3.6, 3.7, 3.8 chapter-locfreq/merge/ 1, 2, 3
3.9, 3.10 chapter-locfreq/vecta/ —
3.11 chapter-locfreq/convergence/ —
4.1, 4.2, 4.3, 4.4 chapter-merge/apache/ —
4.5, 4.6 chapter-merge/pcable/ —
4.7 chapter-merge/pcable2/ —
5.1, 5.2, 5.3, 5.5, 5.6 chapter-merge/mighes/ —
5.4, chapter-merge/triop/ —

Listing 1: chapter-locfreq/merge/SConstruct
1 from rsf.proj import *

from radius import radius

3

# must have ’legacy.rsf’ and ’hires.rsf’ initial data sets in same directory

5

# Initial figures
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7 Result(’legacy ’,’grey title=" Legacy"’)

Result(’hires -agc’,’hires’,

9 ’agc rect1 =2000 rect2=5 | grey title="High -resolution"’)

11 # frequency content

Flow(’legacy -spec’,’legacy ’,’spectra all=y’)

13 Result(’nspectra -orig’,’high -spec legacy -spec’,

’’’cat axis=2 ${SOURCES [1]} | scale axis=1 | window max1 =180 |

15 graph title=" Normalized Spectra" label2 =" Amplitude" unit2 =""’’’)

17 # Balance local frequency

flol =40

19 corrections = 5

Flow(’legacyfilt ’,’legacy ’,’bandpass flo=%d ’%(flol))

21 radius(’hires ’,’legacyfilt ’, corrections , [0.13 ,0.2 ,0.3 ,0.5 ,0.5] ,

bias=0, clip=90, rect1=80, rect2 =16, maxval =90 )

23

End()

Listing 2: chapter-locfreq/merge/radius.py
from rsf.proj import *

2

def radius(high , low , # initial high and low frequency images

4 niter , # number of corrections

c, # ’step length ’ for radius corrections. Can

6 # be type int or float for constant c

# or type array for changing c.

8 bias=-15, clip=30, # bias and clip for display

rect1=40, rect2 =80, # radius for local frequency calculation

10 maxrad =1000, # maximum allowed radius

theor=True , # use theoretical smoothing radius

12 scale=9, # scale for theoretical smoothing radius

initial =10, # initial value for contant smoothing radius

14 minval=0, maxval =25, # min and max local frequency for display

titlehigh="Hires",

16 titlelow="Legacy"):

18 if type(c) is float or type(c) is int:

c = [c]* niter

20

# plot image

22 def seisplot(name):

return ’grey title ="%s"’%name

24

# local frequency

26 locfreq = ’’’iphase order =10 rect1=%d rect2 =%d hertz=y complex=y |

put label=" Frequency" unit=Hz’’’%(rect1 ,rect2)

28

def locfreqplot(name):

30 return ’grey mean=y color=j scalebar=y title ="%s" ’%name

32 # difference in local frequencies

freqdif = ’add scale=-1,1 ${SOURCES [1]} | put label=Frequency ’

34

def freqdifplot(num):

36 return ’’’grey allpos=y color=j scalebar=y mean=y

title=" Difference in Local Frequencies %s"

38 clip=%d bias=%d minval =%d

maxval =%d’’’ %(num ,clip ,bias ,minval ,maxval)

40
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# plot spectral content

42 specplot = ’’’cat axis=2 ${SOURCES [1]} |

scale axis=1 | window max1 =180 |

44 graph title=" Normalized Spectra" label2 =" Amplitude" unit2 =""’’’

46 # plot smothing radius

def rectplot(name):

48 return ’’’grey color=j mean=y title ="%s" scalebar=y barlabel=Radius

barunit=samples ’’’%name

50

# smooth with radius

52 smooth = ’nsmooth1 rect=${SOURCES [1]}’

54 ############################################################################

56 # plot images

Result(high , seisplot(titlehigh))

58 Result(low , seisplot(titlelow))

60 # initial local frequency

Flow(’high -freq’,high ,locfreq)

62 Result(’high -freq’,locfreqplot(’%s Local Frequency ’%titlehigh))

64 Flow(’low -freq’,low ,locfreq)

Result(’low -freq’,locfreqplot(’%s Local Frequency ’%titlelow))

66

# initial difference in local frequency

68 Flow(’freqdif ’,’low -freq high -freq’,freqdif)

Result(’freqdif ’,freqdifplot(’’))

70

# initial smoothing radius

72 if (theor):

from math import pi

74 Flow(’rect0’,’low -freq high -freq’,’’’math f1=${SOURCES [1]}
output ="sqrt(%g*(1/( input*input) -1/(f1*f1)))/%g"’’’%(scale ,2*pi *0.001))

76 else:

Flow(’rect0’,’low -freq’,’math output =%f’%initial)

78

Result(’rect0 ’,rectplot("Smoothing Radius 0"))

80

# smoothing using intial smoothing radius guess

82 Flow(’high -smooth0 ’,’%s rect0’ % high ,smooth)

Result(’high -smooth0 ’, seisplot("%s Smooth 0"%titlehigh))

84

# frequency spectra

86 Flow(’high -spec’,high ,’spectra all=y’)

Flow(’low -spec’,low ,’spectra all=y’)

88 Flow(’high -smooth -spec0 ’,’high -smooth0 ’,’spectra all=y’)

Result(’nspectra ’,’high -spec low -spec’,specplot)

90 Result(’high -smooth -spec0’,’high -smooth -spec0 low -spec’,specplot)

92 Flow(’high -smooth -freq0 ’,’high -smooth0 ’,locfreq)

Result(’high -smooth -freq0’,

94 locfreqplot("%s Local Frequency Smoothed %d" %(titlehigh ,0)))

96 Flow(’freqdif -filt0’,’low -freq high -smooth -freq0’,freqdif)

Result(’freqdif -filt0’,freqdifplot(’0’))

98

prog=Program(’radius.c’)

100 for i in range(1, niter +1):

j = i-1
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102

# update smoothing radius

104 Flow(’rect%d’%i,’rect%d freqdif -filt%d %s’%(j,j,prog [0]),

’./${SOURCES [2]} freq=${SOURCES [1]} c=%f’%c[j])

106 Result(’rect%d’%i,rectplot("Smoothing Radius %d")%i)

108 # smooth image with radius

Flow(’high -smooth%d’%i,’%s rect%d’%(high ,i),smooth)

110 Result(’high -smooth%d’%i, seisplot(’%s Smooth %d’%(titlehigh ,i)))

112 # smoothed spectra

Flow(’high -smooth -spec%d’%i,’high -smooth%d’%i,’spectra all=y’)

114 Result(’high -smooth -spec%d’%i,’high -smooth -spec%d low -spec’%i,specplot)

116 # smoothed local frequency

Flow(’high -smooth -freq%d’%i,’high -smooth%d’%i,locfreq)

118 Result(’high -smooth -freq%d’%i,

locfreqplot(’%s Local Frequency Smoothed %d’%(titlehigh ,i)))

120

# frequency residual

122 Flow(’freqdif -filt%d’%i,’low -freq high -smooth -freq%d’%i,freqdif)

Result(’freqdif -filt%d’%i,freqdifplot(str(i)))

Listing 3: chapter-locfreq/merge/radius.c
/* smoothing radius (min = 1) */

2 #include <rsf.h>

#include <math.h>

4

int main (int argc , char* argv [])

6 {

int n1, n1f , n2 , n2f , i, n12 , n12f;

8 float *rect , *fr , maxrad , c, *rad;

sf_file in , out , freq;

10

sf_init (argc ,argv);

12

in = sf_input("in");

14 freq = sf_input("freq");

out = sf_output("out");

16

if (! sf_histint(in ,"n1" ,&n1)) sf_error("No n1= in input.");

18 if (! sf_histint(freq ,"n1",&n1f)) sf_error("No n1= in frequency difference.");

20 n2 = sf_leftsize(in ,1);

n2f = sf_leftsize(freq ,1);

22

n12 = n1*n2;

24 n12f = n1f*n2f;

26 if (n1 != n1f) sf_error("Need matching n1");

if (n2 != n2f) sf_error("Need matching n2");

28

if (! sf_getfloat("c",&c)) c=1.;

30 if (! sf_getfloat("maxrad",&maxrad)) maxrad =1000.;

32 rect = sf_floatalloc(n12);

sf_floatread(rect ,n12 ,in);

34

fr = sf_floatalloc(n12f);

36 sf_floatread(fr,n12 ,freq);
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38 rad = sf_floatalloc(n12);

40 for (i=0; i < n12; i++) {

42 /* update radius */

rad[i] = rect[i]+c*fr[i];

44

/* set constraint conditions: [1, maxrad] */

46 if (rad[i] > maxrad)

rad[i] = maxrad;

48 if (rad[i] < 1.0)

rad[i] = 1.0;

50 }

52 sf_floatwrite(rad ,n12 ,out);

exit (0);

54 }
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